Monte Carlo methods for option pricing
In mathematical finance, a Monte Carlo option model uses Monte Carlo methods to calculate the value of an option with multiple sources of uncertainty or with complicated features.[1]
The term 'Monte Carlo method' was coined by Stanislaw Ulam in the 1940s. The first application to option pricing was by Phelim Boyle in 1977 (for European options). In 1996, M. Broadie and P. Glasserman showed how to price Asian options by Monte Carlo. In 2001 F. A. Longstaff and E. S. Schwartz developed a practical Monte Carlo method for pricing American-style options.
Methodology
In terms of theory, Monte Carlo valuation relies on risk neutral valuation.[1] Here the price of the option is its discounted expected value; see risk neutrality and Rational pricing: Risk Neutral Valuation. The technique applied then, is (1) to generate several thousand possible (but random) price paths for the underlying (or underlyings) via simulation, and (2) to then calculate the associated exercise value (i.e. "payoff") of the option for each path. (3) These payoffs are then averaged and (4) discounted to today. This result is the value of the option.[2]
This approach, although relatively straightforward, allows for increasing complexity:
- Monte Carlo Methods allow for a compounding in the uncertainty.[7] For example, where the underlying is denominated in a foreign currency, an additional source of uncertainty will be the exchange rate: the underlying price and the exchange rate must be separately simulated and then combined to determine the value of the underlying in the local currency. In all such models, correlation between the underlying sources of risk is also incorporated; see Cholesky decomposition: Monte Carlo simulation. Further complications, such as the impact of commodity prices or inflation on the underlying, can also be introduced. Since simulation can accommodate complex problems of this sort, it is often used in analysing real options [1] where management's decision at any point is a function of multiple underlying variables.
- Simulation can similarly be used to value options where the payoff depends on the value of multiple underlying assets [8] such as a Basket option or Rainbow option. Here, correlation between assets is likewise incorporated.
Application
As can be seen, Monte Carlo Methods are particularly useful in the valuation of options with multiple sources of uncertainty or with complicated features, which would make them difficult to value through a straightforward Black–Scholes-style or lattice based computation. The technique is thus widely used in valuing path dependent structures like lookback- and Asian options [9] and in real options analysis.[1][7] Additionally, as above, the modeller is not limited as to the probability distribution assumed.[9]
Conversely, however, if an analytical technique for valuing the option exists—or even a numeric technique, such as a (modified) pricing tree [9]—Monte Carlo methods will usually be too slow to be competitive. They are, in a sense, a method of last resort;[9] see further under Monte Carlo methods in finance. With faster computing capability this computational constraint is less of a concern.
References
Notes
Articles
- Boyle, Phelim P., Options: A Monte Carlo Approach. Journal of Financial Economics 4, (1977) 323-338
- Broadie, M. and P. Glasserman, Estimating Security Price Derivatives Using Simulation, Management Science, 42, (1996) 269-285.
- Longstaff F.A. and E.S. Schwartz, Valuing American options by simulation: a simple least squares approach, Review of Financial Studies 14 (2001), 113-148
Resources
Books
- Bruno Dupire (1998). Monte Carlo:methodologies and applications for pricing and risk management. Risk.
- Paul Glasserman (2003). Monte Carlo methods in financial engineering. Springer-Verlag. ISBN 0-387-00451-3.
- Peter Jäckel (2002). Monte Carlo methods in finance. John Wiley and Sons. ISBN 0-471-49741-X.
- Don L. McLeish (2005). Monte Carlo Simulation & Finance. ISBN 0-471-67778-7.
- Christian P. Robert, George Casella (2004). Monte Carlo Statistical Methods. ISBN 0-387-21239-6.
Software
External links
- Monte Carlo Simulation, Prof. Don M. Chance, Louisiana State University
- Pricing complex options using a simple Monte Carlo Simulation, Peter Fink (reprint at quantnotes.com)
- MonteCarlo Simulation in Finance, global-derivatives.com
- Monte Carlo Derivative valuation, contd., Timothy L. Krehbiel, Oklahoma State University–Stillwater
- Applications of Monte Carlo Methods in Finance: Option Pricing, Y. Lai and J. Spanier, Claremont Graduate University
- Option pricing by simulation, Bernt Arne Ødegaard, Norwegian School of Management
- Monte Carlo Method, riskglossary.com